107,333 research outputs found

    Osteology and relationships of Rhinopycnodus gabriellae gen. et sp. nov. (Pycnodontiformes) from the marine Late Cretaceous of Lebanon

    Get PDF
    The osteology of Rhinopycnodus gabriellae gen. and sp. nov., a pycnodontiform fish from the marine Cenomanian (Late Cretaceous) of Lebanon, is studied in detail. This new fossil genus belongs to the family Pycnodontidae, as shown by the presence of a posterior brush-like process on its parietal. Its long and broad premaxilla, bearing one short and very broad tooth is the principal autapomorphy of this fish. Within the phylogeny of Pycnodontidae, Rhinopycnodus occupies an intermediate position between Ocloedus and Tepexichthys

    Osteology and relationships of Rhinopycnodus gabriellae gen. et sp. nov. (Pycnodontiformes) from the marine Late Cretaceous of Lebanon

    Get PDF
    The osteology of Rhinopycnodus gabriellae gen. and sp. nov., a pycnodontiform fish from the marine Cenomanian (Late Cretaceous) of Lebanon, is studied in detail. This new fossil genus belongs to the family Pycnodontidae, as shown by the presence of a posterior brush-like process on its parietal. Its long and broad premaxilla, bearing one short and very broad tooth is the principal autapomorphy of this fish. Within the phylogeny of Pycnodontidae, Rhinopycnodus occupies an intermediate position between Ocloedus and Tepexichthys

    Gladiopycnodontidae, a new family of pycnodontiform fi shes from the Late Cretaceous of Lebanon, with the description of three genera

    Get PDF
    The osteology of Gladiopycnodus karami gen. et sp. nov., of Monocerichthys scheuchzeri gen. et sp. nov. and of Rostropycnodus gayeti gen. et sp. nov., three new fossil fishes from the marine Cenomanian (Late Cretaceous) of Lebanon, is studied in detail. Some of their cranial characters and the presence of a postcoelomic bone clearly refer these fishes to the order Pycnodontiformes. However, they differ from all other described Pycnodontiformes by two important characters. Their snout is elongated as a rostrum, formed by the enlarged prefrontal and the toothless premaxilla, with this premaxilla sutured by its upper margin to the lower margin of the prefrontal. Their pectoral fin is replaced by a strong spine articulated with the cleithrum. These two apomorphies justify the erection of a new family, the Gladiopycnodontidae. The skull of Monocerichthys scheuchzeri sp. nov. does not differ greatly from a classical pycnodontiform skull and this species seems to be the more primitive member of this new family. Gladiopycnodus karami gen. et sp. nov. and Rostropycnodus gayeti gen. et sp. nov. are much more specialized. They share some apomorphies not present in Monocerichthys scheuchzeri gen. et sp. nov., i. e., an extremely long rostrum and an elongated first anal pterygiophore that sustains with the postcoelomic bone a strong and long anal spine. Gladiopycnodontidae fam. nov. and Coccodontidae share a series of apomorphies that justify the erection of a new superfamily, Coccodontoidea, grouping these two families

    The Victoria Falls, a species boundary for the Zambezi Parrotfish, Cyphomyrus discorhynchus (Peters, 1852), and the resurrection of Cyphomyrus cubangoensis (Pellegrin, 1936) (Mormyridae: Teleostei)

    Get PDF
    Cyphomyrus discorhynchus occurs in the Zambezi River and in the linked systems of the Kwando and the Okavango. We collected specimens from both above and below the Victoria Falls and recorded Electric Organ Discharges. We found a marked degree of anatomical differentiation among the specimens from the Zambezi delta to the Victoria Falls that represents a subspecific, geographical cline, reflecting the great length (1400 km) and high ecological diversity of that river section (Lower and Middle Zambezi). We confirm that the populations above the Falls (i.e. Upper Zambezi, Kwando and Okavango) are differentiated from those below, possessing fewer dorsal fin rays (a median of 30–31 rather than 33–34). The waveforms of the electric organ discharge pulses have four phases and show geographic variation but were briefer for specimens from below the Falls. We resurrect Cyphomyrus cubangoensis (Pellegrin, 1936) for the Upper Zambezi/Kwando/Okavango system

    Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals

    Get PDF
    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high index cavities.Comment: 7 pages, 8 figure

    Beyond geographic path dependencies: towards a post-structuralist approach of the port-city interface

    Get PDF
    Technological breakthroughs in the maritime transport industry gave rise to multimodality and global supply chains (Olivier & Slack, 2006). The high competitive character of this maritime transport industry induced transnational corporations (TNCs) to integrate their logistic processes horizontally and vertically. In order to keep attracting these TNCs, ports evolved downstream away from the city, followed by an economic, spatial and most recently by an institutional separation; resulting in less innovation due to the decreasing related variety between maritime and urban economics (Hall & Jacobs, 2012). Other emerging varying conditions are related to the sea level rise which reduces available space were port could further expand, leading to governance dilemmas between economy and ecology. Finally, as the burdens, such as congestion or a decreasing employment rate, are for the region, and the economic benefits are for a small group of TCNs, the ‘license to operate’ has become increasingly complex. The numerous different concepts and models trying to understand these changes are usually based on a historic-morphological approach that can be traced back to the so-called ‘anyport model’ and its modifications (Hoyle, 1989). The theoretical approach of these models is imbedded in structuralism and tries to generalize the observed evolution of the port city complex. An increasing number of researchers critiques the mainstream theories and their ambition for building universal understanding. Researchers emphasize the importance of the port city interface and its related variety. Therefore they point out the risk of facilitating the multidimensional separation by using a wrong assumption and a lack of understanding local processes with a global outlook. To tackle this risk, we have to move beyond this lock-in (Boelens & de Roo, 2014). There is a need to move towards a post-structural perspective of the port city interface, resulting in a more complex, actor-relational and co-evolving approach. This paper is the first step of a four year PhD-research on the theme of the port city interface. In the first part a literature framework is proposed of the previous research about the subject, questioning if existing studies have to be more attuned to regional and local characteristics. The second section focuses on the post-structuralist approach and explores its potential application for the study of the port city complexes. It will illustrate recent ideas of co-evolution and actor networks (Boelens & de Roo, 2014) applied on case studies in Belgium

    A revision of the genus Astatoreochromis (Teleostei, Cichlidae), East-Africa

    Get PDF
    A taxonomic revision of the cichlid genus Astatoreochromis is presented. Eighteen meristic and 23 morphometric measurements were taken on 185 individuals, including type specimens. While fin counts separate populations from the Lake Victoria region (Astatoreochromis alluaudi) from those of the Rusizi and Malagarazi rivers in the Lake Tanganyika basin (A. vanderhorsti and A. straeleni respectively), clear differentiation was not detected between the latter two. Mann-Whitney U-tests on specimens of comparable size from the two Tanganyika populations revealed significant differences in specimens 75 mm SL and Astatoreochromis vanderhorsti is herein considered a junior synonym of A. straeleni. A redescription of the two valid species of Astatoreochromis, A. alluaudi and A.straeleni, is provided

    Allopatric differentiation in the Marcusenius macrolepidotus species complex in southern and eastern Africa: the resurrection of M. pongolensis and M. angolensis, and the description of two new species (Mormyridae, Teleostei)

    Get PDF
    We critically compared local populations of the bulldog fish, Marcusenius macrolepidotus (Peters 1852), from different watersheds, from the furthest south (28° South, South Africa) to the Equator in Kenya. We ascertained allopatric differentiation from topotypical M. macrolepidotus from the Lower Zambezi River (Mozambique) in morphology, electric organ discharges, and molecular genetics for: (1) samples from the Okavango and Upper Zambezi Systems (Botswana and Namibia), (2) samples from South Africa's rivers draining into the Indian Ocean, and (3) samples from the East African Tana River (Kenya). Significant genetic distances in the mitochondrial cytochrome b gene and differing ISSR-PCR profiles corroborate differentiation between the four taxa. We resurrect M. pongolensis (Fowler, 1934) for South Africa (sample 2), and M. angolensis (Boulenger, 1905) for the Quanza River/Angola. We recognize M. altisambesi sp. n. for the Upper Zambezi/Okavango specimens (sample 1), and M. devosi sp. n. for those from Kenya (sample 3)
    corecore